2021 - Dental Fluorosis & Gq/11

Recent Research
Post Reply
admin
Site Admin
Posts: 5485
Joined: Tue Jan 18, 2005 10:25 pm

2021 - Dental Fluorosis & Gq/11

Post by admin »

Weng Q, Yi F, Yu Y, Ge S, Liu S, Zhang Y - "Altered miRNA expression profiling in enamel organ of fluoride affected rat embryos" Ecotoxicol Environ Saf. 210:111876. (2021)
https://pubmed.ncbi.nlm.nih.gov/33418158/

Abstract

Evidence has shown that miRNAs could play a role in dental fluorosis, but there is no study has investigated the global expression miRNA profiles of fluoride-exposed enamel organ. In this study, we analysed the differentially expressed (DE) miRNAs between fluoride-treated and control enamel organ for the first time and found several candidate miRNAs and signaling pathways worthy of further research. Thirty Wistar rats were randomly distributed into three groups and exposed to drinking water with different fluoride contents for 10 weeks and during the gestation. The three groups were a control group (distilled water), medium fluoride group (75 mg/L NaF), and high fluoride group (150 mg/L NaF). On the embryonic day 19.5, the mandible was dissected for histological analysis, and the enamel organ of the mandibular first molar tooth germ was collected for miRNA sequencing (miRNA-seq) and quantitative real-time PCR analysis (qRT-PCR). Typical dental fluorosis was observed in the incisors of the prepregnant rats. In addition to the disorganized structure of enamel organ cells, 39 DE miRNAs were identified in the fluoride groups compared with the control group, and good agreement between the miRNA-seq data and qRT-PCR data was found. The functional annotation of the target genes of 39 DE miRNAs showed significant enrichment in metabolic process, cell differentiation, calcium signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway terms. This study provides a theoretical reference for an extensive understanding of the mechanism of fluorosis and potential valuable miRNAs as therapeutic targets in fluorosis.

See also:

Zhang Y, Kim JY, Horst O, Nakano Y, Zhu L, Radlanski RJ, Ho S, Den Besten PK - "Fluorosed mouse ameloblasts have increased SATB1 retention and Gαq activity" PLoS One 9(8):e103994 (2014)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121220/

Dental fluorosis is characterized by subsurface hypomineralization and increased porosity of enamel, associated with a delay in the removal of enamel matrix proteins. To investigate the effects of fluoride on ameloblasts, A/J mice were given 50 ppm sodium fluoride in drinking water for four weeks, resulting serum fluoride levels of 4.5 µM, a four-fold increase over control mice with no fluoride added to drinking water. MicroCT analyses showed delayed and incomplete mineralization of fluorosed incisor enamel as compared to control enamel. A microarray analysis of secretory and maturation stage ameloblasts microdissected from control and fluorosed mouse incisors showed that genes clustered with Mmp20 appeared to be less downregulated in maturation stage ameloblasts of fluorosed incisors as compared to control maturation ameloblasts. One of these Mmp20 co-regulated genes was the global chromatin organizer, special AT-rich sequence-binding protein-1 (SATB1). Immunohistochemical analysis showed increased SATB1 protein present in fluorosed ameloblasts compared to controls. In vitro, exposure of human ameloblast-lineage cells to micromolar levels of both NaF and AlF3 led to a significantly increase in SATB1 protein content, but not levels of Satb1 mRNA, suggesting a fluoride-induced mechanism protecting SABT1 from degradation. Consistent with this possibility, we used immunohistochemistry and Western blot to show that fluoride exposed ameloblasts had increased phosphorylated PKCα both in vivo and in vitro. This kinase is known to phosphorylate SATB1, and phosphorylation is known to protect SATB1 from degradation by caspase-6. In addition, production of cellular diacylglycerol (DAG) was significantly increased in fluorosed ameloblasts, suggesting that the increased phosphorylation of SATB1 may be related to an effect of fluoride to enhance Gαq activity of secretory ameloblasts.

SEE ALSO:
viewtopic.php?f=3&t=2992
Post Reply